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The steam—water—ice system: a two-dimensional
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Mathematics Department, Makerere University, Kampala, Ugandat
Received 1 August 1972, in final form 31 January 1973

Abstract. The model studied consists of a two-dimensional triangular lattice of which some
sites are occupied by the centres of molecules, the remainder being unoccupied. Each
molecule has three bonding directions at angles of 120° to each other and two possible
orientations, in each of which its bonding directions point to three of the six nearest-
neighbour sites. If the molecules of a nearest-neighbour pair have bonding directions
pointing towards each other a bond is formed; bonded and unbonded pairs have different
interaction energies.

The calculations of Bell and Lavis, using a first order approximation based on a triangle
of sites, are extended to include both short- and long-range order. Two transitions are
obtained, one of a vapour-liquid type and another of a liquid-solid type, the solid being
less dense than the liquid. It is thus possible to obtain a complete phase diagram for vapour,
liquid and one solid phase. The clese-packed state is shown to be the low temperature form
of the liquid phase.

1. Introduction

The present paper is an extension of the work of Bell and Lavis (1970b), (hereafter
referred to as BL(b)), to include an ice phase. We shall consider a two-dimensional
triangular lattice model in which the molecules form bonds in such a way that an open
honevcomb structure with vacant sites is necessary for the achievement of maximum
bonding energy in the assembly, (see figure 1). Close packing cccurs when the open
structure is broken down under the influence of pressure and thermal motion. This
situation resembles that occurring in water, (see eg Eisenberg and Kauzmann 1969
pp 185-9, Fletcher 1970 pp 73-83). although, because of the simplifications made, the
model cannot be regarded as entirely realistic.

In the liquid state there is some form of molecular order which is short-range in
character. This may, for example, consist of separate groups of molecules bonded
within themselves to form parts of a honeycomb structure, (see BL(b), figure 3). BL(b)
introduced into the lattice model short-range ordering using a first-order approximation
based on a triangle of sites. One phase transition of the steam-water type was obtained
together with the characteristic density maximum found in liquid water. This suggests
that these features can be accounted for by simple structural characteristics like those of

+ Present and permanent address: Mathematics Department, Chelsea College, University of London,
Manresa Road, London, SW3 6LX
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State | Bonded State 2

Figure 1. The arrays o, §§ and y of the plane triangular lattice and the orientational states of
the molecules. The v sites are regarded as interstitial for the long-range order. The low
temperature honeycomb arrangement corresponds to a fully bonded configuration of
molecules occupying the x and f sites, (indicated by unbroken lines), with the 7 sites un-
occupied.

this two-dimensional model. Solid phases correspond to forms of long-range order. To
include an ice phase in this two-dimensional model we shall therefore introduce, in the
present work, a form of long-range ordering.

Bell and Lavis (1970a), (hereafter referred to as BL(a)), considered an ‘interstitial’
model designed to include liquid and gaseous states. The low-temperature open honey-
comb configuration was ensured by an initial choice of a honeycomb array. Bonding was
allowed to occur only between nearest-neighbour sites of this array; the remaining sites
were regarded as interstitial. Long-range ordering was introduced between the sites of
the honeycomb array and the interstitial sites. This long-range ordering is seen to be
distinct in purpose and nature from that of the present paper. The approximation
method used by BL(a) was first-order. Such a model could also have been investigated
using a zeroth-order approximation; it has been shown by Perram (1971) that this
would yield results equivalent to those for a three-dimensional ‘cage’ model.

A three-dimensional model based on a body-centred cubic lattice was investigated
by Bell (1972). Short-range ordering was introduced in a manner similar to that of
BL(b) and phase diagrams were obtained which were not unlike those of the two-
dimensional model. The natural extension of the work of both BL(b) and Bell (1972) is to
include both short- and long-range ordering. There are two reasons for dealing initially
with the two-dimensional model :

(i) Since in the three-dimensional model there is the possibility of both a high- and
low-density long-range ordered phase, the calculations for this model will be more
difficult than that for the two-dimensional model where there is only a low-density
long-range ordered state. However, as has been mentioned above, the phase diagrams
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for short-range ordering only are similar and it is interesting to be able to compare
them with long-range ordering included.

(ii) A wider variety of alternative approximation methods exist for two-dimensional
models. It is possible, for example, to make useful comparisons with semi-infinite matrix
models as has been done by Bellemans and Nigam (1967) for a lattice gas of hard square
molecules. The basic premises of the model will now be introduced.

We consider M molecules on the N lattice sites, (N = M), of a two-dimensional
triangular lattice consisting of three equivalent interpenetrating triangular arrays
labelled %, 8 and ¥, (see figure 1). The (two-dimensional) volume of the lattice is NA,,
where A, is the area of the lattice per lattice site. We regard each molecule as possessing
three bonding directions at 120° to each other. A molecule on a lattice site has two
orientational states, termed states 1 and 2, in each of which the molecule has bonding
directions pointing towards three of the six nearest-neighbour sites, (see figure 1). If
bonding directions from each of a nearest-neighbour pair of molecules point towards
each other then a bond is formed. It is supposed that the interaction energy for pairs of
molecules is confined to nearest-neighbours and is —¢ and — (¢ + w) for unbonded
and bonded pairs respectively, € and w being constants with € = 0, w > 0.

It was shown in BL(a) § 2 that there exists a separation pressure P, given by

Po="""- (L.1)

such that for 0 < P < P, the stable equilibrium state at absolute zero temperature is a
fully bonded arrangement of molecules on a honeycomb array, the remaining sites
being vacant. For P, < P the stable equilibrium state at absolute zero temperature
has all sites occupied by molecules. These calculations apply equally well to the present
model and it is therefore convenient to choose as energy parameters Aw = w — 3¢ and
€ rather than w and €, imposing the condition that Aw > 0.

As in the two previous papers we assume that the internal degrees of freedom of the
molecules contribute to the partition function a multiplicative factor {¥,(T)}™ which is
independent of the lattice configurations and of the orientations of the molecules.

2. First-order approximation and equilibrium conditions

We shall consider a closed isothermal-isobaric system, M the number of molecules, T the
absolute temperature and P the pressure being constants, with g, the chemical potential
of the molecules, and N, the number of lattice sites, being variables. We define the density
p of the system by

=5 (2.1)
The purpose of this section is to obtain equations relating the equilibrium values of
o and u to the equilibrium values of long- and short-range order variables for fixed
value of Tand P.
Let E. be the configuration energy corresponding to a particular arrangement of
M molecules on N lattice sites and Q be the degeneracy associated with this arrangement.
The canonical partition function is given by

ZIN.M, T) = {¥(T)}M> Qexp <— —Ef> (2.2)

kT)
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The summation in (2.2) is over all possible configurations of the molecules. The constant
pressure partitition function is given by

AM, T, P) = i exp <_ E\Ik‘f )Z(N, M, T) (2.3)

N=M

and the equilibrium value of the chemical potential by
k
U= - —]\;ln AM, T P). (2.4)

The equilibrium value of N, and hence of p, corresponds to the maximum term in the
summation in (2.3) and the equilibrium values of the internal ordering variables
correspond to the maximum term in the summation in (2.2). From (2.2), (2.3) and (2.4)
we have, therefore,

1,
p= ;)iPAo + fe} (2.5)
where f, 1s the Helmholtz free energy per site given by
1
fi= N {E. — kTIn Q}. (2.6)

The problem now is to obtain explicit expressions for E. and Q and to minimize y with
respect to the internal order variables and with respect to p.

We shall adopt a formulation and notation which reduces in the absence of long-
range order to that of BL(b). The degeneracy among the occupations of a triangle of
sites which arises in BL(b), because the arrays are regarded as equivalent, (see BL(b),
figure 5), is partly removed by introducing some long-range order parameters. These
serve to distinguish between array v and the other two arrays but still leave « and B
equivalent. This introduces into the situation a certain degree of artificiality since a
thoroughgoing analysis would leave the possibility of which array arises as the set of
interstitial sites open; but we shall see that this model is sufficient for our purpose,
(ie for the occurrence of a solid phase). As in BL(b) we shall use the first-order triangle
approximation of Guggenheim and McGlashan (1951), and assign the probabilities of
occupation of triangles of sites ¥,, i = 1, ..., 7, as shown in figure 2. These variables
meastre the degree of clustering of the molecules on the lattice, and thus indicate the
degree of short-range order. At high temperatures we should expect the arrangement of
molecules to be completely random with

Yy =(1-p) 6, = p(l — p)?
3y = 3y, = 6y5 = p*1 — p) 6g = 20, = p°.
In addition we define the probabilities n, i = 1,..., 8 to distinguish between occupations

in terms of their relationship to the arrays o, § and 7, (see figure 2). Thus, for example, the
probability that, on a triangle of sites, there is a bonded pair of molecules on the « and
p sites, the y site being unoccupied, is ¥/5(3 — 2n,). On the other hand the probablities
that the bonded pair occupies either the « and v or § and 7y pair of sites are both y3n;.
The variable #,, therefore, measures the tendency for ordering to occur between o, 8
and 7. The same applies to all the other #. In the absence of long-range order 5, = 1,
i=1,...,8 (and, for example, ¥4(3 — 2n;) = ¥5n,). An essential feature of the method
of Guggenheim and McGlashan is that compatibility is ensured between the occupations
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Figure 2. Occupational probability for a triangle of sites with short- and long-range ordering.
Molecules in their two orientational states and vacant sites are labelled 1, 2 and h respectively.
Full lines indicate bonds. The sites are situated with respect to «. § and y as shown in the
top diagram.

of triangles of sites and the occupations of single sites. We shall need, therefore, to
introduce single-site probabilities. Let p,(k) be the probability of a -site, where § = «, f, 7,
being occupied in a way specified by k, where k = 1,2, for different molecular orientations

and k = h, for a vacant site. The single site variables x;, i = 1,..., 5, are defined by
xg = p,(1) = ps(2) (2.7q)
Xz = pyf2) = pg(1) (2.7b)
x3 = puh) = pylh) = —x, | (2.7¢)
x4 =pll)=p2) = 3p/2 —X; — X, (2.7d)
xs =ph)=1—3p + 2x; + 2x,. (2.7¢)
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In the absence of long-range ordering x;, = x, = x, = p/2, x; = x5 = 1 — p; these
variables, therefore, also measure the degree of long-range ordering,
We have introduced in all twenty internal variables, related by the conditions

Xy =Wl 33 =2n3) +ana + 53 —ne) + Y634+ 1, —ng)+ ¥, (2.8a)
Xo =Y My +Wans + Y3 =2n) + s —ns)+ (3 —ns+1ng)+ 1, (2.8)

Xy =y + Y6 —ny — 1))+ Yshy + Yana +Usns +1e) (2.8¢)
Xa =23 =1y —13)+ ¥ans + Wana+¥sns +n6) + 36 + Y7 (2.84)
Xs =Y+ 205Ny +12) + 133 =213) + ¥(3-21,) + 2053 —ns —n6) (2.8¢)
L=y + 60y + 3y + 3, + 605 + 6Yrg + 244 (2.81)
P =20+ 23 + 20, + ds + 66 + 205, (2.89)

In terms of these variables the configuration energy is given by
E. = =3N{Aw(Ws + 20r) + €3 + Yy + 205 + 1206 + 207)}. (2.9)

Using N triangles of sites to give the correct total number, 3N, of nearest-neighbour
pairs of sites, the basic assumption of the first order approximation is that

mQ=IQ +InQ, (2.10)

where Q, would be the number of ways of arranging the occupations of the triangles
of sites if each triangle could be occupied by molecules independently of the occupation
of neighbouring triangles and € is a factor which ensures that Q gives the correct value
when the arrangement is random apart from the constraints imposed by fixed values of
Xpi=1,...,5

Using Stirling’s approximation we have

InQy = =N Iny, + 6y, Inh, +3Y;Iny, +3¢,Iny, +6YsIny;
+6YsInyg + 205 Inv, + 20,Lny, 15) + Y3Lina n3)

+ Y L(n4 n) + 20sLinsne) + 206LUng, ng)} (2.11)
where
Lia,b) =alna+blnb+3 —a~-b)In(3 —a—->b) (2.12)
and
4
In Q, :%N<2 Y x;Inx; +x51nx5>. (2.13)
=1

The chemical potential given by (2.5) is now minimized with respect to the twenty
internal variables and p subject to the constraints imposed by equations (2.8). These
constraints are most easily dealt with by using Lagrange’s undetermined multipliers.
The detailed manipulation will not be given but is available on request as unpublished
appendix A. The results may most conveniently be given by defining

j = exp (f%) (2.14q)
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the absolute activity,

with

The equilibrium values of the variables ., i = 1,...,7, 5, i = 1,

tq
wlz_z

¥

ty2zq

Y3 =1y —na) = =

Y33 — 2ns3) = ¢

Va3 — 2n,) = 1v’sq
Ws(3 —ns — ne) = ty*s’q
We(3 — 17 — ng) = s*zq

¥y = ty’szq
o T
3 -1 z
/P Szr
3—m —m z
7]3 SZZ
3 — 2#, ¥
M4 z

(2.14b)
(2.14c)

(2.144)

(2.150)
(2.15h)

(2.15¢)

(2.15d)

..., 8 are given by

(2.16a)

(2.16b)

(2.16¢)
(2.16d)
(2.16¢)
(2.16f)
(2.16g)

(2.17a)
(2.17b)
(2.17¢)

(2.17d)



The steam—water—ice system 1537

3_f77’15§i‘772 - r'jf (2.17¢)
3__:77’159___;]; - ; (2.171)
3___’7’7_77___",8 _ .915 2.179)
i 17’778__% - 2. (2.17h)

From (2.15a), (2.15b) and (2.7)
<K>m _ PLp.(h)
z p.(hp (1)

<rj“:=pgmm@z
2 Poh)p,(2)
The variable (r/z) is, therefore, a measure of the extent to which molecules congregate

on the o or § arrays compared to the extent to which they congregate on the y array.
From equations (2.15d), (2.7a) and (2.7b)

or

s _ 22+ D)
(1) + py2)

With respect to the formation of a perfectly bonded honeycomb structure of molecules
on the o and f arrays, a molecule with orientation 1 on the « array or a molecule with
orientation 2 on the f array is ‘correctly’ oriented; but a molecule with orientation 2
on the « array or a molecule with orientation 1 on the f array is ‘incorrectly’ oriented.
Thus the variable s measures the ratio of incorrectly to correctly oriented molecules on
the x and p arrays. The variables (#/z) and s are, therefore, both long-range order variables
the former measuring the degree of segregation between the honeycomb array formed
by o and § and the interstitial sites of y and the latter the degree of molecular orientation
on this honeycomb array. We have already seen that the variables #,, i = 1,...,8 are
long-range order variables with #; = 1, i = 1,..., 8 in the absence of long-range order.
It follows from equations (2.17) that in the absence of long-range order s = 1 and r = z.
In this case from (2.16¢) and (2.16f) z = r = /5, and by dividing the remaining
equations of (2.16) by (2.16¢) we obtain the equations of BL(b), (3.9). The variables r and z
are, therefore, in the absence of long-range order, both equal to the short-range order
variable r of BL(b), which measures the extent to which molecules form bonded clusters
with the remaining sites occupied, (close-packing), compared to the extent to which
they form groups bonded to form parts of an open honeycomb arrangement. When
short- and long-range ordering are present the temperature dependence of r and z is
affected by the long-range order, but, since they occur in the relationships involving the
short-range order variables , i = 1,...,6, they can still be regarded as short-range
order variables. This applies also to the variable g, which has been introduced mainly to
simplify the presentation.

Substitution from (2.16) and (2.17) into (2.18) gives seven equations relating the
variables x;, i = 1,....,5,. 2,7, 4,5, p and A at constant pressure and temperature. These
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together with the four equations of (2.15) give eleven equations in eleven variables. The
procedure henceforth consists of the elimination of x;, i = 1,...,5, z and g to give four
equations in the four variables r, s, p and 1. The details of these calculations are contained

in appendix A and the results are given as follows:

T3

Defining
ao(s) = {1 + (1 = 2s)}/(1 — ty?) (2.18a)
ay(s) = {2s(s — 1) + (1 — $)(1 + ty*) /(1 — 1y%) (2.18b)
ay(s) = ty*(s = /(1 — 1*) (2.18¢)
as(s) = {s — ty3 (1 + s* — /L — ty*) (2.184)
bi(s) =14 ty*(s* — 1) + 2ty® + ty3s? (2.19q)
by(s) = 1 + 2s% + ty3s* (2.19b)
cols) = tao(s) + 2ty*a(s) (2.20a)
c1(s) = ty*(1 + s%)ag(s) + tay(s) + {2 + ty*(2 + sH)}a,(s) + 2ty*as(s) (2.20b)
cy(8) = ty*(1 + s%)ay(s) + {s* + ty°2 + s?)}as(s) (2.20¢)
di(s)=s* +ty°2 + 5% (2.21a)
dy(s) =1+ 5% + s* + ty’s (2.21b)
e,(s) = 2ty*(1 + s?) (2.22a)
ey(s) = 1 + 2ty3s? + ty3s* (2.22b)
with
Pl 1) = <Z(z, :: :Zf)l/z(z,vt2++€clirlr++e;r;rz> (2.23a)
2
hyls, 7) = r1/2<t;(; }%11’;;%22;9 (2.23b)
r and s are related at constant pressure and temperature by the equations
hi(s, 1) = hy(s, ) (2.24)
and
(co+ cxr + ) (t + egr + e — *1%(ay + ayr)[co
+ {21+ )+ ey + b1+ )2 + by(1 + )P =0, (2.25)
The absolute activity is given by
= y5h3(s,7) (2.26a)
or
A= y®hi(s,r) (2.26b)
and the density by
)= g( (a; + ras) (ty? + dyr + dor®) + (1 + 53 (ty? + byr + byr?) > 227)

co + [er + ty2(1 + s¥)]r + [cy + by(1 + s3)]r% + by(1 + s3%°
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3. The stable equilibrium state at absolute zero temperature

In the limit as the temperature T tends to absolute zero,t and y, given by (2.14¢) and
(2.144) respectively, also tend to zero. In this case we may obtain simplified asymptotic
forms for equations (2.23), (2.25) and (2.27). There are five possible limiting behaviours
for the variable r:

r—-0,rt-0

(ii) r = 0, r?/t — c, c finite and nonzero

(i) r = 0, ¥/t »

(iv) r - rg, 1o finite and nonzero

V) r - 0.
From the asymptotic form of (2.24) we may obtain the limits for s in these cases and
from (2.25) the ranges of pressures to which these limits apply. Finally from (2.26) and
(2.27) asymptotic forms for chemical potential u and density p may be obtained. The
details of these calculations are given in unpublished appendix B available on request.
The results are summarized in table 1.

Table 1. The limiting values for absolute zero temperature of s, r and p and the asymptotic

form for p.
r § p u
0 1 0 — 0
0 1 0 —kTIn(9/2) — (w + €)
oo 0 1 3 kTIn (4) = 3 (w + ¢)
- 0 03498 0 —kTln (5207) — (w + €
w0 0 2 ~3w+ e
o 0 3 —3(w+ €+ 3P4,
O<P<P 1 2 2kTIn(3) — 3 (w + €) + 3 PA,
p=p 231 0-4138 0-8963 2 kTln (0-7997) — 6¢
o 6-464 1 09763 2 kTin (0-8059) — 6¢
P>P, ks 1 1 kTin6 — (w + 3¢) + PA,

4. Numerical calculations and results

For particular values of P and T,(2.25) is a polynomial equation in r with coefficients
which are functions of the long-range order variable s. The equilibrium values of s for
a particular value of P and Tare, from (2.24), the roots of the equation

0 = hy(s, r(s)) — hy(s, 1s)) 4.1

in the range 0 < s < 1%, where r(s) is a positive root of (2.25). (Computation of the
equilibrium value of s was programmed so that, at each stage of the iteration, if (2.25)
had more than one positive root, r(s) was chosen to be that one for which |h; — h,| had
the smallest value).

+ It is clear from (2.15d) that s = 0 and from (2.74) and (2.7b) we see that s > 1 corresponds to a form of
ordering with either the « or the f array forming the interstitial sites. Since, however, we have imposed a
random arrangement of states on the y array, (see (2.7d)), this ordering cannot be perfect throughout the
lattice even at absolute zero temperature.
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4.1. The liquid and vapour phases

Clearly s = 1 is a root of (4.1) for all temperatures since h,(1,r) and h,(1,r) are, from
(2.23), identical functions. This is the solution with no long-range order obtained in
BL(b). In this case, if more than one positive solution of (2.25) occurs, each will represent
an equilibrium solution. In BL(b) numerical calculations were performed for e/w = 0-25
and €/w = 0-0 and in each case it was found that there was a critical pressure P, such
that, on isobars in the density—temperature plane with P < P, a transition occurred.
This transition was marked by the occurrence of a region of temperature within which
there were three equilibrium values for  and p. The actual transition temperature was
obtained by plotting against temperature the chemical potential along the isobar. The
transition occurs at the temperature where this curve intersects itself forming a loop,
(see BL(b), figures 7, 8 and 9). When such a transition occurs the phase above the transition
is referred to as ‘the vapour phase” and the phase below the transition ‘the liquid phase’.
The transition is first order except for P = P_ where it becomes second order. We have

0-7

06

Metastcble liid *, ..
05 phase \ e \‘

Metastable vapour phase

Solid phase
04

)\IIZ y-3

03

02

0l

09 [Re] 12 [-4 [ |8
kTlAw

Figure 3. A%y~ % plotted against temperature for ¢/w = 0-25 at P/P, = 0-005.
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shown that as the temperature is reduced along an isobar a density maximum occurs,
(see figure 4 and also figures 7 and 8 of BL(b)). This is a characteristic of liquid water
occurring for atmospheric pressure at 4 °C.

_ —

04 08 2 - 16 20 24
kT/Aw

Figure 4. Isobars in the density-temperature plane for ¢/w = 0:25. Each curve is labelled
with the value of P/P,,.

In table 1 it may be seen that in the range 0 < P < P, and in the absence of long-range
order, r = Y¢/y3 > 0 and p » % as T— 0. We therefore have a form of short-range
ordering consisting of clusters of molecules bonded in a honeycomb structure. This is a
limiting form of the liquid state; it occurs by a first order transition from the vapour
state for 0 < P < P, and by a continuous change in the variable r for P, < P < P,
{We considered only cases for which P, < Py). For P > Py, r = yo/3 > 0 and p - 1
as T— 0 and a high density liquid state is achieved at low temperatures. This state
occurs by a continuous change of the variable r.

4.2. The solid phase

The extension of the results of BL(b) to include solutions for s 3 1 is, as we have said,
the task of the present paper. Such a long-range ordered state will be referred to as
‘the solid phase’. The computation was again performed for €¢/w = 0-25 and ¢/w = 0-0.
In each case the transition to the solid phase was first order and was accompanied by a
decrease in density, (see figure 4). Again the actual transition temperature is obtained by
considering the chemical potential of the states, (see figure 3, (it was more convenient to
consider AY2y~3 rather than u but this makes no material difference)). In the case
€/w = 025 it was found (see figure 5), that at high pressures no transition of any kind
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Solid phase

0-05*

02 06 -0 14 I8 22
kT/Aw

Figure 5. The phase diagram for e¢/w = 0-25.

occurs. For pressures between P = 1-16 P, and P = P, two transitions occur as the
temperature is lowered, first into the solid phase and then back to the dense liquid phase,
(see figure 4). Below P = P, and above P = P, (= 0-1927 P,) one transition to the
solid phase occurs. Between P = P, and P = P, (=0-0693 P,) two transitions occur.
As the temperature is lowered the transition to the liquid phase, detected in BL(b), is
the first to occur followed by a second transition to the solid phase. For pressures
below the triple point the transition to the solid phase occurs at temperatures above that
at which the transition to the liquid phase would occur, (see figure 3). Similar results
were obtained for e/w = 00 except that there is no range of pressures for which the
transition to the liquid phase occurs at temperatures above that to the solid phase,
(P> P).

It may be seen from table 1 that, apart from the particular pressures P = 0 and
P = P, there is only one long-range ordered state at low temperatures. This is the
state for which s > 0, ¥ » oc and p » 2 as T— 0. It occurs for P < P, and at T= 0
corresponds to the fully bonded honeycomb arrangement of molecules on the « and §
arrays (see figure 1). It is reasonable to regard this state as corresponding to the ice I
phase in the water system. That this solid phase is more stable at low temperatures
than the low density liquid state can be seen from the presence of the additional term
2kTIn (3) in the asymptotic form of the chemical potential for the liquid, (see table 1).
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Figure 6. Magnified section of figure S.

5. Conclusions

Four unsatisfactory aspects of the model are evident:

(i) The density maximum in the liquid state occurs, (for €/w = 0-25), in the metastable
region below the liquid-solid transition. In the liquid state the density increases mono-
tonically along an isobar for decreasing temperature. It does not appear to be possible to
ameliorate this deficiency by varying the parameter (e/w).

(ii) At temperatures above and near to the triple-point the liquid—solid transition
curve has a positive gradient in the phase diagram. Thus we may deduce from the
Clapyron equation that the transition as temperature is decreased is accompanied by
an increase in entropy. This conflicts with experimental results, (see Eisenberg and
Kauzmann (1969) table (3.7)). This appears to be a limitation of lattice models resulting
from their inability to provide sufficient entropy in states with no long-range order.

(iii) Within the limitations of the two-dimensional model it is not possible to provide
for a high density long-range ordered state. (It will be seen from table 1 that, at the
density p = 1 for T= 0, s = 1. Although groups of molecules are able to achieve the
maximum bonding for p = 1, with an average of two bonds per molecule, no preferential
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arrangement with respect to «, § and y is exhibited.) This deficiency is related to the
large number of possible arrangements of the molecules for p = 1 and T = 0 compatible
with the maximum configurational energy. In BL(b) it was shown that the residual
entropy of this state is the same as that of an Ising antiferromagnet.

(iv) Using a two-dimensional triangular lattice, it is not possible to introduce, in any
satisfactory way, the nonsymmetric character of the hydrogen bonds between molecules,
(see eg Eisenberg and Kauzmann 1969 p 143). As a consequence of this our open honey-
comb arrangement of molecules at T= 0, with p = 2/3 and s = 0, has no residual
entropy. This particular deficiency was overcome by Lieb (1967) who employed a square
lattice. He, however, made no attempt to introduce vacant sites into his model. Such
vacant sites are, of course, necessary for any model which attempts to account for liquid
and gaseous phases.

It is likely that an extension of the three-dimensional model of Bell (1972) to include
long-range ordering would represent an improvement. At the very least it would provide
for a close-packed solid phase, since on the body-centred cubic lattice it is possible to
form an arrangement of molecules which occupies all the sites of the lattice and which
allows each molecule to be fully bonded. This phase is similar to that of ice VIL

Because of the limitations of our model we are able to make only qualitative com-
parison with experiment. Nevertheless it is clear that many of the characteristics of the
water system have been simulated by the introduction of a simple form of bonding into a
two-dimensional lattice model. In particular, we have obtained two transitions, the
vapour-liquid transition achieving a phase of greater density and the liquid-solid
transition achieving a phase of lower density. We have found also that in the solid phase
there are intervals of temperature on each isobar for which the coefficient of expansion
is negative. The results of Dantl (1962) indicate that this is the case for ice cooled below
63 K. The work of Collins and White (1964), for other tetrahedral structures, (eg silicon
and germanium), produces similar results. It is suggested by Eisenberg and Kauzmann
(1969) p 105, that this negative coefficient of expansion is associated with the excitation
of hindered translational vibrations. Our results tend to contradict this suggestion
since we have made no provision for such vibrations and yet we achieve similar behaviour.
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